150 research outputs found

    ViSOR: VIdeo Surveillance On-line Repository for annotation retrieval

    Full text link
    Aim of the Visor Project [1] is to gather and make freely available a repository of surveillance and video footages for the research community on pattern recognition and multimedia retrieval. Th

    Heterogeneous Mean Field for neural networks with short term plasticity

    Full text link
    We report about the main dynamical features of a model of leaky-integrate-and fire excitatory neurons with short term plasticity defined on random massive networks. We investigate the dynamics by a Heterogeneous Mean-Field formulation of the model, that is able to reproduce dynamical phases characterized by the presence of quasi-synchronous events. This formulation allows one to solve also the inverse problem of reconstructing the in-degree distribution for different network topologies from the knowledge of the global activity field. We study the robustness of this inversion procedure, by providing numerical evidence that the in-degree distribution can be recovered also in the presence of noise and disorder in the external currents. Finally, we discuss the validity of the heterogeneous mean-field approach for sparse networks, with a sufficiently large average in-degree

    Average synaptic activity and neural networks topology: a global inverse problem

    Full text link
    The dynamics of neural networks is often characterized by collective behavior and quasi-synchronous events, where a large fraction of neurons fire in short time intervals, separated by uncorrelated firing activity. These global temporal signals are crucial for brain functioning. They strongly depend on the topology of the network and on the fluctuations of the connectivity. We propose a heterogeneous mean--field approach to neural dynamics on random networks, that explicitly preserves the disorder in the topology at growing network sizes, and leads to a set of self-consistent equations. Within this approach, we provide an effective description of microscopic and large scale temporal signals in a leaky integrate-and-fire model with short term plasticity, where quasi-synchronous events arise. Our equations provide a clear analytical picture of the dynamics, evidencing the contributions of both periodic (locked) and aperiodic (unlocked) neurons to the measurable average signal. In particular, we formulate and solve a global inverse problem of reconstructing the in-degree distribution from the knowledge of the average activity field. Our method is very general and applies to a large class of dynamical models on dense random networks

    Fast gesture recognition with Multiple StreamDiscrete HMMs on 3D Skeletons

    Get PDF
    HMMs are widely used in action and gesture recognition due to their implementation simplicity, low computational requirement, scalability and high parallelism. They have worth performance even with a limited training set. All these characteristics are hard to find together in other even more accurate methods. In this paper, we propose a novel doublestage classification approach, based on Multiple Stream Discrete Hidden Markov Models (MSD-HMM) and 3D skeleton joint data, able to reach high performances maintaining all advantages listed above. The approach allows both to quickly classify presegmented gestures (offline classification), and to perform temporal segmentation on streams of gestures (online classification) faster than real time. We test our system on three public datasets, MSRAction3D, UTKinect-Action and MSRDailyAction, and on a new dataset, Kinteract Dataset, explicitly created for Human Computer Interaction (HCI). We obtain state of the art performances on all of them

    Reframing Italianness: Circulation of Italian Fiction Films in the United States During the 1930s

    Full text link
    This project takes into consideration a largely unexamined aspect of the Italian Fascist regime’s foreign propaganda: the attempt to promote a Fascist notion of Italianness in the United States through fiction films. My examination of this phenomenon uncovers the transatlantic exchanges between Italy and the U.S. during the 1930s by bringing into dialogue several disciplines, including political history, film studies, international relations, and reception studies. Contrary to what both Italian and American film scholarship has assumed for decades, my research shows that the Fascist government supported the distribution of about 130 Italian fiction films in the U.S. from the early 1930s to 1941. The Italian Embassy, in collaboration with the Consulates spread throughout the country, sought to exploit fiction films, which were not political in nature, to propagate a positive and ideologically acceptable depiction of the “new” Italy. I especially investigate how romantic comedies and historical films reworked a conception of Italianness that was consistent with the regime’s prospect of a “spiritual” reawakening and with the representation of Fascism as the ideal bridge between the country’s glorious historical, artistic, and religions traditions and its embrace of technological and industrial modernity. The result of my research is that the regime’s promotional effort was largely unsuccessful. The film reviews published in the American and Italian-American press and, more speculatively, the reading positions that those reviews and editorials expose, reveal that Italian fiction films mostly confirmed notion of backwardness and aesthetic decadence that contradicted the regime’s desiderata.PHDRomance Languages & Literatures: ItalianUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137134/1/vezzani_1.pd

    Learn to See by Events: Color Frame Synthesis from Event and RGB Cameras

    Get PDF
    Event cameras are biologically-inspired sensors that gather the temporal evolution of the scene. They capture pixel-wise brightness variations and output a corresponding stream of asynchronous events. Despite having multiple advantages with respect to traditional cameras, their use is partially prevented by the limited applicability of traditional data processing and vision algorithms. To this aim, we present a framework which exploits the output stream of event cameras to synthesize RGB frames, relying on an initial or a periodic set of color key-frames and the sequence of intermediate events. Differently from existing work, we propose a deep learning-based frame synthesis method, consisting of an adversarial architecture combined with a recurrent module. Qualitative results and quantitative per-pixel, perceptual, and semantic evaluation on four public datasets confirm the quality of the synthesized images

    Head Detection with Depth Images in the Wild

    Get PDF
    Head detection and localization is a demanding task and a key element for many computer vision applications, like video surveillance, Human Computer Interaction and face analysis. The stunning amount of work done for detecting faces on RGB images, together with the availability of huge face datasets, allowed to setup very effective systems on that domain. However, due to illumination issues, infrared or depth cameras may be required in real applications. In this paper, we introduce a novel method for head detection on depth images that exploits the classification ability of deep learning approaches. In addition to reduce the dependency on the external illumination, depth images implicitly embed useful information to deal with the scale of the target objects. Two public datasets have been exploited: the first one, called Pandora, is used to train a deep binary classifier with face and non-face images. The second one, collected by Cornell University, is used to perform a cross-dataset test during daily activities in unconstrained environments. Experimental results show that the proposed method overcomes the performance of state-of-art methods working on depth images

    YACCLAB - Yet Another Connected Components Labeling Benchmark

    Get PDF
    The problem of labeling the connected components (CCL) of a binary image is well-defined and several proposals have been presented in the past. Since an exact solution to the problem exists and should be mandatory provided as output, algorithms mainly differ on their execution speed. In this paper, we propose and describe YACCLAB, Yet Another Connected Components Labeling Benchmark. Together with a rich and varied dataset, YACCLAB contains an open source platform to test new proposals and to compare them with publicly available competitors. Textual and graphical outputs are automatically generated for three kinds of test, which analyze the methods from different perspectives. The fairness of the comparisons is guaranteed by running on the same system and over the same datasets. Examples of usage and the corresponding comparisons among state-of-the-art techniques are reported to confirm the potentiality of the benchmark

    Fully Convolutional Network for Head Detection with Depth Images

    Get PDF
    Head detection and localization are one of most investigated and demanding tasks of the Computer Vision community. These are also a key element for many disciplines, like Human Computer Interaction, Human Behavior Understanding, Face Analysis and Video Surveillance. In last decades, many efforts have been conducted to develop accurate and reliable head or face detectors on standard RGB images, but only few solutions concern other types of images, such as depth maps. In this paper, we propose a novel method for head detection on depth images, based on a deep learning approach. In particular, the presented system overcomes the classic sliding-window approach, that is often the main computational bottleneck of many object detectors, through a Fully Convolutional Network. Two public datasets, namely Pandora and Watch-n-Patch, are exploited to train and test the proposed network. Experimental results confirm the effectiveness of the method, that is able to exceed all the state-of-art works based on depth images and to run with real time performance
    • …
    corecore